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2 — MATRICES AND DETERMINANTS

2.1 Definition of Matrix
Definition 2.1.1 A matrix is defined as a rectangular array of numbers, enclosed by brackets.

A =




a11 a12 ... a1n

a21 a22 ... a2n

. .

. .

. .
am1 am2 ... amn




R The numbers in the array are called the elements of the matrix.

Some examples of matrices are:
�
−1 3 8
−3 4 1

�
,




−1 3
7 11
0 1


 ,




−1 3 8
2 7 11
−3 4 1


,

�
−1.3 0.8

�
, A =




3
0
1


 .

Note:
• If a matrix A has m rows(horizontals) and n columns(verticals), then the size (or dimension) of

the matrix A is m×n (read as ’m by n’).
• ai j is the element that appears in the ith row and in the jth column.
• A = (ai j)m×n is an m×n matrix.

� Example 2.1 Consider A =

�
0 3 8
2 7 11

�
.

The size of matrix A is 2×3 because it has two rows and three columns.
The elements

a11 = 0, First row, first column, a23 = 11 Second row, third column �

Definition 2.1.2 Two matrices are equal if they have the same size and their corresponding ele-
ments are equal.
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� Example 2.2 Let A =

�
3 −5 x
2 y+1 3

�
and B =

�
3 −5 2x−1
2 5 3

�
. Find the values of x and y

such that A = B �

Solution: For the two matrices to be equal, we must have corresponding entries equal, so

x = 2x−1 =⇒ x = 1 a13 = b13

y+1 = 5 =⇒ y = 4 a22 = b22

� Example 2.3 Consider the two matrices given below

A =

�
−1 3 8
2 7 11

�
and B =

�
−1 4 8
2 7 11

�
.

�

Solution: The size of the two matrix is 2×3. Since a12 = 3 �= 4 = b12, we can say that A �= B

2.1.1 Types of Matrices
1. Row Matrix: A matrix which has exactly one row (1×n) called a row matrix (row vector)

Example: A =
�

2 5 6
�

is a 1×3 row matrix.
2. Column Matrix: A matrix which has exactly one column (m×1) matrix is called a column

matrix (or column vector).

Example: A =




1
2
0


 is a 3×1 column matrix.

3. Square Matrix:A matrix in which the number of rows is equal to the number of columns is
called a square matrix.(n×n)

B =




−1 4 8
2 7 11
3 −6 0


 .

is a 3×3 square matrix.
4. Null or zero matrix: A matrix each of whose elements is zero is called a zero matrix.

Example: B =

�
0 0 0
0 0 0

�
is a 2×3 zero matrix.

5. Diagonal matrix:is a square matrix whose every element other than diagonal elements is zero.
The matrix 


4 0 0
0 2 0
0 0 1


,

�
2 0
0 2

�
,




0 0 0
0 0 0
0 0 0


,




4 0 0
0 0 0
0 0 12


,

are example of diagonal matrix.

R The elements aii are called diagonal elements of a square matrix (ai j).

6. Scalar matrix: A scalar matrix is a diagonal matrix whose diagonal elements are equal


2 0 0
0 2 0
0 0 2


,

�
0 0
0 0

�
,




1 0 0
0 1 0
0 0 1


,
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7. Identity matrix: is a diagonal matrix whose diagonal elements are equal to 1 (units)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

�
1 0
0 1

�
,




1 0 0
0 1 0
0 0 1


,

8. Triangular matrix:
A square matrix whose elements ai j = 0 when ever i < j is called a lower triangular matrix.
And square matrix whose elements ai j = 0 when ever i > j is called an upper triangular matrix.



1 0 0 0
2 11 0 0
3 2 4 0
0 −3 6 12


,

�
1 0
2 −1

�
,




1 0 0
−3 1 0
2 1.5 1




are lower triangular matrix. And


1 2 6 3
0 2 8 5
0 0 7 −9
0 0 0 12


,

�
1 6
0 3

�
,




1 3 5
0 10 8
0 0 −1




are upper triangular matrix

2.2 Matrix Addition and Scalar Multiplication

Let A = (ai j) and B = (bi j) be two matrices with the same size, say m× n. The sum of A and B,
written A+B, is the matrix obtained by adding corresponding elements from A and B. That is, if

A =




a11 a12 ... a1n

a21 a22 ... a2n

. .

. .

. .
am1 am2 ... amn




and B =




b11 b12 ... b1n

b21 b22 ... b2n

. .

. .

. .
bm1 bm2 ... bmn




then,

A+B =




a11 +b11 a12 +b12 ... a1n +b1n

a21 +b21 a22 +b22 ... a2n +b2n

. .

. .

. .
am1 +bmn am2 +bm2 ... am1 +bmn




The product of the matrix A by a scalar k, written kA, is the matrix obtained by multiplying each
element of A by k. That is,

kA =




ka11 ka12 ... ka1n

ka21 ka22 ... ka2n

. .

. .

. .
kam1 kam2 ... kamn




The matrix −A is called the negative of the matrix A, and the matrix A−B is called the difference
of A and B.
Subtraction is performed on matrices of the same size by subtracting corresponding elements. Thus,
A−B = A+(−B)

R The sum of matrices with different sizes is not defined.
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� Example 2.4 Let A =



−1 3
7 11
0 1


 and B =




3 5
4 1
10 −6


. Find

(a) A+B (b) 2A (c) 3A−2B

�

Solution:

(a) A+B =



−1 3
7 11
0 1


+




3 5
4 1
10 −6


=



−1+3 3+5
7+4 11+1
0+10 1+(−6)


=




2 8
11 12
10 −5




(b) 2A = 2



−1 3
7 11
0 1


=



−2 6
14 22
0 2




(c) 3A−2B = 3



−1 3
7 11
0 1


−2




3 5
4 1

10 −6


=



−3 9
21 33
0 3


−




6 10
8 2
20 −12


=



−9 −1
13 31
−20 15




Properties of Matrix Addition and Scalar Multiplication
If A,B, and C are any m×n matrices and if O is the zero m×n matrix, and k, l are any real number,
then the following hold:

(a) Associative law: A+(B+C) = (A+B)+C
(b) Commutative law: A+B = B+A
(c) Additive identity law: A+O = O+A = A
(d) Additive inverse law: A+(−A) =−A+A = O
(e) Distributive law: k(A+B) = kA+ kB

Distributive law: (l + k)A = lA+ kA
(f) Scalar unit 1A = A
(g) Scalar zero 0A = O

2.2.1 Transpose Matrix

Definition 2.2.1 The transpose of a matrix A, written At , is the matrix obtained by interchanging
the columns and rows of A. That is, if A = (ai j) is m×n matrix, then At = (bi j) is n×m matrix
where (bi j) = (a ji)

� Example 2.5 Let A =

�
4 2 3
2 5 −9

�
. Then At =




4 2
2 5
3 −9


 �

Properties

(a) (A+B)t = At +Bt

(b) (At)t = A
(c) (kA)t = kAt , k scalar
(d) (AB)t = BtAt
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R A square matrix A is symmetric if At = A .
A square matrix A is skew symmetric if At =−A.

� Example 2.6 Let A =



−2 5 4
5 9 12
4 12 −7


 B =




0 −5 9
5 0 6
−9 −6 0


. Find At , Bt

�

Solution: At =



−2 5 4
5 9 12
4 12 −7


= A =⇒ , Matrix A is symmetric

Bt =




0 5 9
−5 0 −6
9 6 0


=−B =⇒ , Matrix B is skew symmetric

Theorem 2.2.1 Let A be a square matrix. Then
(a) A+At is symmetric.
(b) A−At is skew symmetric.

� Example 2.7 Let A =




4 3 6
−1 0 7
3 −2 1


 �

Solution: At =




4 −1 3
3 0 −2
6 7 1


, then

B = A+At =




4 3 6
−1 0 7
3 −2 1


+




4 −1 3
3 0 −2
6 7 1


=




8 2 9
2 0 5
9 5 2


= Bt , which is symmetric

C = A−At =




4 3 6
−1 0 7
3 −2 1


−




4 −1 3
3 0 −2
6 7 1


 =




0 4 3
−4 0 9
−3 −9 0


 = −Ct , which is skew sym-

metric
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2.3 Matrix Multiplication

Definition 2.3.1 Let A be an m×n matrix and let B be an n× k matrix. The product matrix AB is
the m× k matrix whose entry in the i th row and j th column is the product of the i th row of A and
the j th column of B.

R The number of columns of A must equal the number of rows of B in order to get the product
matrix AB.

� Example 2.8 Let A =

�
2 3 4
−1 2 2

�
, B =




6 −2
−4 2
0 1


 , C =

�
10 2
4 3

�
. Find

(a) AB (b) BA (c) BC (d) CA (e) AC

�

Solution:
(a) Here, matrix A is 2×3 and matrix B is 3×2, so matrix AB can be found and will be 2×2.

AB =

�
2 3 4
-1 2 2

�



6 -2
-4 2
0 1


 =

�
2 . 6 + 3 . -4 + 4 . 0 2 . -2 + 3 . 2 + 4 . 1
-1 . 6 + 2 . -4 + 2 . 0 -1 . -2 + 2 . 2 + 2 . 1

�

=

�
12+−12+0 −4+6+4
−6+−8+2 2+4+2

�
=

�
10 6
−12 8

�

(b) Here, matrix B is 3×2 and matrix A is 2×3, so matrix BA can be found and will be 3×3.

BA =




6 −2
−4 2
0 1



�

2 3 4
−1 2 2

�
=




6×2+−2×−1 6×3+−2×2 6×4+−2×2
−4×2+2×−1 −4×3+2×2 −4×4+2×2
0×2+1×−1 0×3+1×2 0×4+1×2




=




14 14 20
−10 −8 −12
−1 2 2




(c) Here, matrix B is 3×2 and matrix C is 2×2, so matrix BC can be found and will be 3×2.

BC =




6 −2
−4 2
0 1



�

10 2
4 3

�
=




6×10+−2×4 6×2+−2×3
−4×10+2×4 −4×2+2×3
0×10+1×4 0×2+1×3




=




52 6
−32 −2

4 3




(d) Here, matrix C is 2×2 and matrix A is 2×3, so matrix CA can be found and will be 2×3.

CA =

�
10 2
4 3

��
2 3 4
−1 2 2

�
=

�
10×2+2×−1 10×3+2×2 10×4+2×2
4×2+3×−1 4×3+3×2 4×4+3×2

�

=

�
18 34 44
5 18 22

�

(e) Since the number of column in matrix A (2× 3) is not equal to the number of rows in
matrix C (2×2), the product AC is not defined.

Zena S. @ ASTU, 2017 Applied Mathematics I



2.3 Matrix Multiplication 31

Properties of Matrix Multiplication

Let A be a matrix of dimension m× k, let B be a matrix of dimension k× r, and let C be a matrix of
dimension r×n

(a) Matrix multiplication is not commutative. That is, in general, AB �= BA
(b) Matrix multiplication is associative. That is, A(BC) = (AB)C
(c) Distributive property: A(B+C) = AB+AC and (A+B)C = AC+BC
(d) k(AB) = (kA)B = A(kB), where k is a scalar.
(e) If A is a square matrix of dimension n×n, then AIn = InA = A, where In is n×n identity

matrix
(f) If A is m×n, then AIn = A = ImA

R If A and B are matrices such that the products AB and BA exist, then AB may not equal BA. The
cancellation law do not hold for matrix multiplication. That is, if AB = AC then it is not true in
general that B =C.
If a product AB is the zero matrix, we cannot conclude in general that either A = 0 or B = 0

� Example 2.9 Let A =

�
5 −2
3 4

�
B =

�
1 3 2
4 −1 6

�
, C =




4 −3 −2
0 2 0
7 8 1


. Show that A(BC) =

(AB)C,AI2 = I2A = A �

Solution: Since matrix A is 2×2, matrix B is 2×3 and matrix C is 3×3, the product A(BC) = (AB)C
can be found and will be 2×3

AB =

�
5 −2
3 4

��
1 3 2
4 −1 6

�
=

�
−3 17 −2
19 5 30

�

BC =

�
1 3 2
4 −1 6

�


4 −3 −2
0 2 0
7 8 1


=

�
18 19 0
58 34 −2

�

A(BC) =

�
5 −2
3 4

��
18 19 0
58 34 −2

�
=

�
−26 27 4
286 193 −8

�
=

�
−3 17 −2
19 5 30

�


4 −3 −2
0 2 0
7 8 1


= (AB)C

I2A =

�
1 0
0 1

��
5 −2
3 4

�
=

�
5 −2
3 4

�
=

�
5 −2
3 4

��
1 0
0 1

�
= AI2

� Example 2.10 Let A =

�
1 2
3 6

�
, B =

�
2 −4
−1 2

�
. Find AB, BA �

Solution: AB =

�
1 2
3 6

��
2 −4
−1 2

�
=

�
1×2+2×−1 1×−4+2×2
3×2+6×−1 3×−4+6×2

�
=

�
0 0
0 0

�

BA =

�
2 −4
−1 2

��
1 2
3 6

�
=

�
2×1+−4×3 2×2+−4×6
−1×1+2×3 −1×2+2×6

�
=

�
−10 −20

5 10

�
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2.4 Elementary Row Operations and Echelon Form
Let A be an m×n matrix. The elementary row operation on A is

(a) Interchanging two rows of a matrix . If we interchange the ith row with the jth row, then
we usually denote the operation as Ri ←→ R j

(b) Multiply the elements of a row by a non-zero constant. If the ith row is multiplied by α
then we usually denote this operation as Ri −→ αRi

(c) Add a multiple of the elements of one row to the corresponding elements of another row
i.e., Ri −→ Ri +αR j

Definition 2.4.1 Two matrices are equivalent written as A ∼ B if one can be obtained from the
other by a sequence of elementary row operations.

� Example 2.11 Let A =




2 −3 6
1 1 4
5 −4 1


 �

Solution:

A ∼




2 −3 6
4 4 16
5 −4 1


(R2 −→ 4R2)∼




2 −3 6
5 −4 1
4 4 16


(R2 −→ R3)∼




2 −3 6
5 −4 1
0 10 4


(R3 −→ R3 −2R1)

Definition 2.4.2 A matrix is in a row echelon form if it satisfays the following conditions
(a) The first non-zero entry in each row is a 1 (called a Leading 1 ).
(b) If a column contains a leading 1, then every entry of the column below the leading 1 is

a zero.
(c) As we move downwards through the rows of the matrix, the leading 1’s move from left

to right.
(d) Any row (if any) consisting of entirely of zeros appears at the bottom of the matrix.

� Example 2.12 The following matrices are in row echelon form

A =




1
−3
5

4
5

0 1 6
0 0 1


, B =




1 0 14
0 1 0
0 0 0


, C =




1 −13 0 0
0 0 1 5
0 0 0 0


, D =




0 0 0
0 0 0
0 0 0




�

� Example 2.13 The following matrices are not in row echelon form

E =




1 2 14
0 0 0
0 0 4


, F =




1 3 3
0 0 10
0 0 19


, G =




4 5 6
0 6 4
0 3 3




�
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� Example 2.14 Let A be the matrix

A =




1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2




Reduce A to row-echelon form. �

Solution:
1. Get a 1 as the first entry of Row 1. Done.
2. Use this first leading 1 to clear out column 1 as follows :

A ∼ R2→R2−2R1−−−−−−−→
R3→R3−R1




1 −1 −1 2 0
0 3 1 −2 8
0 −2 3 5 2




3. Get a leading 1 as the second entry of Row 2, for example as follows:

A ∼ R2→R2+R3−−−−−−→




1 −1 −1 2 0
0 1 4 3 10
0 −2 3 5 2




4. Use this leading 1 to clear out whatever appears below it in Column 2

A ∼ R3→R3+2R2−−−−−−−→




1 −1 −1 2 0
0 1 4 3 10
0 0 11 11 22




5. Get a leading 1 in Row 3:

R3→ 1
11 R3−−−−−→




1 −1 −1 2 0
0 1 4 3 10
0 0 1 1 2




This matrix is now in row-echelon form.

� Example 2.15 Let H be the matrix

H =




1 −1 1 4
4 2 −2 4
1 −3 5 6




Reduce H to row-echelon form. �

Solution:
1. Get a 1 as the first entry of Row 1. Done.
2. Use this first leading 1 to clear out column 1 as follows :

H ∼ R2→R2−4R1−−−−−−−→
R3→R3−R1




1 −1 1 4
0 6 −6 −12
0 −2 4 4




3. Get a leading 1 as the second entry of Row 2, for example as follows:

H ∼ R2→ 1
6 R2−−−−−→




1 −1 1 4
0 1 −1 −2
0 −2 4 4




4. Use this leading 1 to clear out whatever appears below it in Column 2

H ∼ R3→R3+2R2−−−−−−−→




1 −1 1 4
0 1 −1 −2
0 0 2 0




5. Get a leading 1 in Row 3:

R3→ 1
2 R3−−−−−→




1 −1 1 4
0 1 −1 −2
0 0 1 0




This matrix is now in row-echelon form.
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Definition 2.4.3 A matrix in a row echelon form is said to be in reduced row echelon form if all
entries in any column containing the leading 1 is zero.

� Example 2.16 The following matrices are in reduced row echelon form

A =




1 0 0
0 1 0
0 0 1


, B =




0 1 4 0
0 0 0 1
0 0 0 0


, C =




1 −13 0 0
0 0 1 5
0 0 0 0


 , D =




1 0 2
0 1 0
0 0 0


 �

� Example 2.17 Let A be the matrix

A =




1 −1 1 4
4 2 −2 4
1 −3 5 6




Reduce A to reduced row-echelon form. �

Solution:
1. Get a 1 as the first entry of Row 1. Done.
2. Use this first leading 1 to clear out column 1 as follows :

A ∼ R2→R2−4R1−−−−−−−→
R3→R3−R1




1 −1 1 4
0 6 −6 −12
0 −2 4 4




3. Get a leading 1 as the second entry of Row 2, for example as follows:

A ∼ R2→ 1
6 R2−−−−−→




1 −1 1 4
0 1 −1 −2
0 −2 4 4




4. Use this leading 1 to clear out whatever appears below it in Column 2

A ∼ R3→R3+2R2−−−−−−−→




1 −1 1 4
0 1 −1 −2
0 0 2 0




5. Get a leading 1 in Row 3:

R3→ 1
2 R3−−−−−→




1 −1 1 4
0 1 −1 −2
0 0 1 0




6. Make zero above the leading 1 in column 2

R1→R1+R2−−−−−−→




1 0 0 2
0 1 −1 −2
0 0 1 0




7. Make zero above the leading 1 in column 3

R2→R2+R3−−−−−−→




1 0 0 2
0 1 0 −2
0 0 1 0




This matrix is now in reduced row-echelon form.
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2.4.1 Rank of a matrix
Definition 2.4.4 Let A be an m×n matrix. Let AR be the row echelon form of A. The rank ρ(A) is
the number of non-zero rows of the row echelon form of A (AR).

ρ(A)≤ min(m,n)

� Example 2.18 Find the rank of the following matrices.

A =




1 0 0
0 1 0
0 0 1


, B =




1 4 0
2 9 1
1 5 1


 �

Solution: (a) rank(A) = 3
(b) Write the augmented matrix and apply elementary row operations

B|I =




1 4 0
2 9 1
1 5 1


∼ R3←→R2−3R1−−−−−−−−→

R2−→R2−2R1




1 4 0
0 1 1
0 1 1


∼




1 4 0
0 1 1
0 0 0




Hence, Rank(B) = 2

2.5 Determinant of a Matrix and its Properties
The determinant of a square matrix is a single number that results from performing a specific operation
on the array. The determinant of a matrix A is denoted as det(A) or |A|.

Determinant of order two

Let A =

�
a11 a12
a21 a22

�
be a square matrix of order two. Then

det(A) = a11a22 −a21a12

Determinant of order three

Let A =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 be a 3×3 matrix. Then

det(A) = a11

����
a22 a23
a32 a33

����−a12

����
a21 a23
a31 a33

����+a13

����
a21 a22
a31 a32

����
= a11(a22a33 −a23a32)+a12(a23a31 −a21a33)+a13(a21a32 −a31a22)

� Example 2.19 Find the determinant of the matrix

A =




1 2 4
−1 3 2
0 −4 1


 �

Solution: det(A) = 1(3(1)− (−4)2)−2(−1(1)−0(2))+4((−1)(−4)−0(3)) = 27

Properties of determinants
1. If matrix B results from matrix A by interchanging two rows (columns) of A, then

det(B) =−det(A)
2. If two rows ( columns) of A are equal, then det(A) = 0
3. The determinant of the transpose of A is equal to the determinant of the given matrix A

det(At) = det(A)
4. If a row (column) of A consists entirely of zeros, then det(A) = 0.
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5. If B is obtained from A by multiplying a row (column) of A by a real number c, then
det(B) = cdet(A)

6. If to any row (or column) is added k times the corresponding elements of another row (or
column), the determinant remains unchanged.

7. The determinant of a product of two matrices is the product of their determinants; that is
det(AB) = det(A)det(B).

8. If c is a real number and A is n×n matrix, then det(cA) = cn det(A).
9. The determinant of a diagonal matrix is the product of the diagonal elements.

10. The determinant of identify matrix is 1.

2.6 Inverse of a Matrix
Definition 2.6.1 Let A be a matrix of dimension n×n. A matrix B of dimension n×n is called the
inverse of A if

AB = BA = In

where, In is n×n identity matrix. We denote the inverse of a matrix A, if it exists, by A−1 .

� Example 2.20 Let A =




1 0 0
0 1 0
0 −4 1


 B =




1 0 0
0 1 0
0 4 1


.

Show that matrix A and B are inverse of each other. �

Solution: Since AB =




1 0 0
0 1 0
0 −4 1






1 0 0
0 1 0
0 4 1


=




1 0 0
0 1 0
0 0 1


= BA, then A−1 =




1 0 0
0 1 0
0 4 1




R
• Only square matrices possibly have an inverse.
• A non-square matrix has no inverse.
• The inverse of a square matrix, if it exists, is unique.
• A square matrix that does not have an inverse is called singular.

• If A is invertible, then det(A) �= 0 and det(A−1) =
1

det(A)

An example of a singular matrix is given by

B =

�
0 1
0 0

�

If B had an inverse given by

B−1 =

�
a b
c d

�

where a, b, c, and d are some appropriate numbers, then by the definition of an inverse we would
have BB−1 = I; that is, �

0 1
0 0

��
a b
c d

�
=

�
1 0
0 1

�
=⇒

�
c d
0 0

�
=

�
1 0
0 1

�

which implies that 0 = 1—an impossibility! This contradiction shows that B does not have an
inverse.

Properties of Invertible matrices
1. (At)−1 = (A−1)t

2. (A−1)−1 = A
3. (AB)−1 = B−1A−1
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2.6.1 Gauss–Jordan elimination method
To find the inverse of a matrix A by using Gauss-Jordan elimination method the operations are:

Step 1 Augment the matrix A with identity matrix. i.e., Write in the form A|I.
Step 2 Reduce the augmented matrix in to reduced row-echelon form.

� Example 2.21 Find the inverse of A =

�
7 3
2 1

�
�

Solution: Write the augmented matrix

A|I =
�

7 3
2 1

����
1 0
0 1

�

Apply elementary row operations

A|I ∼ R2−→7R2−2R1−−−−−−−−→
�

7 3
0 1

����
1 0
−2 7

�
∼ R1−→R1−3R2−−−−−−−−→

�
7 0
0 1

����
7 −21
−2 7

�

∼ R1−→ 1
7 R1−−−−−→

�
1 0
0 1

����
1 −3
−2 7

�

Thus, A−1 =

�
1 −3
−2 7

�

� Example 2.22 Find the inverse of A =




3 1 −2
1 1 −1
−5 −2 4


 �

Solution: Write the augmented matrix

A|I =




3 1 −2
1 1 −1
−5 −2 4

������

1 0 0
0 1 0
0 0 1




Apply elementary row operations

A|I ∼ R1←→R2−−−−−→




1 1 −1
3 1 −2
−5 −2 4

������

0 1 0
1 0 0
0 0 1


∼ R2���R2−3R1−−−−−−−−→

R3���R3+5R1




1 1 −1
0 −2 1
0 3 −1

������

0 1 0
1 −3 0
0 5 1




∼ R2���R2+R3−−−−−−−→




1 1 −1
0 1 0
0 3 −1

������

0 1 0
1 2 1
0 5 1


∼ R3���−R3+3R2−−−−−−−−−→




1 1 −1
0 1 0
0 0 1

������

0 1 0
1 2 1
3 1 2




∼ R1���R1+R3−−−−−−−→




1 1 0
0 1 0
0 0 1

������

3 2 2
1 2 1
3 1 2


∼ R1���R1−R2−−−−−−−→




1 0 0
0 1 0
0 0 1

������

2 0 1
1 2 1
3 1 2




Hence, A−1 =




2 0 1
1 2 1
3 1 2



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� Example 2.23 Find the inverse of B =




2 4 −2
−4 −6 1
3 5 −1


 �

Solution: Write the augmented matrix and apply elementary row operations

B|I =




2 4 −2
−4 −6 1
3 5 −1

������

1 0 0
0 1 0
0 0 1


∼ R2←→R2+2R1−−−−−−−−→

R3−→2R3−3R1




2 4 −2
0 2 −3
0 −2 4

������

1 0 0
2 1 0
−3 0 2




∼ R3−→R3+R2−−−−−−−→




2 4 −2
0 2 −3
0 0 1

������

1 0 0
2 1 0
−1 1 2


∼ R1−→R1+2R3−−−−−−−−→

R2−→R2+3R3




2 4 0
0 2 0
0 0 1

������

−1 2 4
−1 4 6
−1 1 2




∼ R1−→R1−2R2−−−−−−−−→




2 0 0
0 2 0
0 0 1

������

1 −6 −8
−1 4 6
−1 1 2


∼ R1−→ 1

2 R1−−−−−→
R2−→ 1

2 R2




1 0 0
0 1 0
0 0 1

������

1
2

−3 −4

−1
2

2 3

−1 1 2




Thus, B−1 =




1
2

−3 −4

−1
2

2 3

−1 1 2




R If there is a row to the left of the vertical line in the augmented matrix containing all zeros, then
the matrix does not have an inverse.

� Example 2.24 Find the inverse of A =




1 3 −4
−2 −6 8
5 −2 1


 if exist. �

Solution: Write the augmented matrix

A|I =




1 3 −4
−2 −6 8
5 −2 1

������

1 0 0
0 1 0
0 0 1




Apply elementary row operations

A|I ∼
R2−→R2+2R1
R3−→R3−5R1−−−−−−−−→




1 3 −4
0 0 0
0 −17 21

������

1 0 0
2 1 0
−5 0 1


∼ R2←→R3−−−−−→




1 3 −4
0 −17 21
0 0 0

������

1 0 0
−5 0 1
2 1 0




Since there is a row to the left of the vertical line in the augmented matrix containing all zeros, then
the matrix A does not have an inverse.
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2.6.2 Cofactor matrix and adjoint

Definition 2.6.2 Let A = (ai j) be an n×n matrix. Let Mi j be the (n−1)× (n−1) sub matrix of
A obtained by deleting the ith row and jth column of A. The determinant det(Mi j) ( is called the
minor of ai j. The cofactor Ai j of ai j is defined as

Ai j = (−1)i+ j det(Mi j).
The cofactor of an n×n matrix A is the matrix

B =




A11 A12 ... A1n

A21 A22 ... A2n

. .

. .

. .
Am1 Am2 ... Amn




Definition 2.6.3 The adjoint of a matrix A , written adjA, is the transpose of the cofactor matrix B.

� Example 2.25 Find the adjoint of

A =




3 −3 −2
1 −1 −1
−3 4 2


 �

Solution:
A11 = |M11|=

����
−1 −1
4 2

����= 2, A12 =−|M12|=−
����

1 −1
−3 2

����= 1, A13 = |M13|=
����

1 −1
−3 4

����= 2

A21 =−|M21|=−
����
−3 −2
4 2

����=−2, A22 = |M22|=
����

3 −2
−3 2

����= 0, A23 =−|M23|=−
����

3 −3
−3 4

����=
−3

A31 = |M31|=
����
−3 −2
−1 −1

����= 1, A32 =−|M32|=−
����
3 −2
1 −1

����= 1, A33 = |M33|=
����
3 −3
1 −1

����= 0

The cofactor matrix is

B =




2 1 2
−2 0 −3
1 1 0




Hence,

Adj A = Bt =




2 −2 1
1 0 1
2 −3 0




Definition 2.6.4 If A is invertible, then det(A) �= 0 and

A−1 =
1

det(A)
Adj A

� Example 2.26 Find the inverse of the matrix

A =




3 −3 −2
1 −1 −1
−3 4 2




if exist. �

Solution: det(A) = 3(−2+4)− (−3)(2−3)+(−2)(4−3) = 1 and Adj A =




2 −2 1
1 0 1
2 −3 0


. Then
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A−1 =
1

det(A)
Adj A =




2 −2 1
1 0 1
2 −3 0




� Example 2.27 Find the inverse of A =

�
2 5
1 3

�
, B =

�
−1 3
−2 4

�
�

Solution: A−1 =
1

2×3−5×1

�
3 −5
−1 2

�
=

�
3 −5
−1 2

�

B−1 =
1

−1×4−3× (−2)

�
4 −3
2 −1

�
=

1
2

�
4 −3
2 −1

�
=




2
−3
2

1
−1
2




2.7 Systems of Linear Equations

An equation of the form

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2
...

...
...

...
... (2.1)

am1x1 +am2x2 + · · ·+amnxn = bm

are called systems of m linear equations in n unknowns. The above system of linear equation can be
written as AX = b, where

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn


 , X =




x1
x2
...

xn


 and b =




b1
b2
...

bm




Here A is called the coefficient matrix, X the unknown value, and b is the right hand side value (the

constant). If b =




0
0
...
0


, the system is called homogeneous; otherwise it is called non-homogeneous. A

homogeneous system has at least one solution, the trivial solution i.e. x1 = 0, x2 = 0, , . . . ,xn = 0. A
solution to a linear system x1, x2, , . . . ,xn is a sequence of n numbers a1, a2, , . . . ,a1 such that each
equation is satisfied when we substitute

x1 = a1, x2 = a2, , . . . ,xn = a1

The matrix A|b =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

���������

b1
b2
...

bm


 is called the augmented matrix, for the

system.

Definition 2.7.1 If a system of equations has at least one solution, it is said to be consistent; if it
has no solution, it is said to be inconsistent. If a consistent system of equations has exactly one
solution, the equations of the system are said to be independent; if it has an infinite number of
solutions, the equations are called dependent.
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2.7.1 Solving System of Equation using Cramer’s Rule
Consider a system of linear equation consisting of n equations with n unknowns

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2
...

...
...

...
... (2.2)

an1x1 +an2x2 + · · ·+annxn = bn

(a) The system (2.2) has a unique solution if the determinant of the coefficient matrix (D =
det(A)) is nonzero. Hence, the solution is given by

x1 =
D1

D
, x2 =

D2

D
, . . . ,xn =

Dn

D
where Dk is the determinant obtained from D by replacing the kth column in D by the
column with the entries b1,b2, . . . ,bn.

(b) If the system is homogeneous and D �= 0, it has only the trivial solutions x1 = x2 = · · ·=
xn = 0. If D = 0, the homogeneous system has non-trivial solution.

� Example 2.28 Solve the system

x− y = 1

−2x+5y+ z = 3

−x+3y+ z = 2

�

Solution: The coefficient matrix is A =




1 −1 0
−2 5 1
−1 3 1


 , X =




x
y
z


 and b =




1
3
2




D = det(A) =

������

1 −1 0
−2 5 1
−1 3 1

������
= 1, D1 =

������

1 −1 0
3 5 1
2 3 1

������
= 3

D2 =

������

1 1 0
−2 3 1
−1 2 1

������
= 2, D3 =

������

1 −1 1
3 5 3
2 3 2

������
=−1

Hence, x =
D1

D
=

3
1
= 3, y =

D2

D
=

2
1
= 2, z =

D3

D
=−1

2.7.2 Solving System of Equation using Gaussian Elimination Method
The method is based on the idea of reducing the given system of equations Ax = b, to an upper
triangular system of equations Ux = z, using elementary row operations.
Consider the system of equation

AX = b
To solve this system:
Step 1: Augment the coefficient matrix with the constant (RHS) value i.e., A|b
Step 2: Perform elementary row operation to change the augmented matrix into upper triangular

matrix.
i. If Rank(A) = Rank(A|b) = n, then the system has a unique solution.

ii. If Rank(A) = Rank(A|b)< n, then the system has infinitely many solution.
iii. If Rank(A) < Rank(A|b), then the system has no solution.

Step 3: Use back substitution to find the unknown values.
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� Example 2.29 Solve the system of linear equations

3x−2y+ z =−1

5x−4y− z = 3

−2x+ y− z = 2

�

Solution: Since , the solution to the given system is x =−2,y =−3, and z =−1.

� Example 2.30 Solve the system of linear equation by using Gaussian elimination methods.

x−3y+ z = 2

2x− y− z = 9

−3x+14y−6z = −1

�

Solution: The coefficient matrix is A =




1 −3 1
2 −1 −1
−3 14 −6


, X =




x
y
z


 and b =




2
9
−1


 Write the

augmented matrix and apply row operations

A|b ∼




1 −3 1
2 −1 −1
−3 14 −6

������

2
9
−1


∼ R2−→R2−2R1−−−−−−−−→

R3−→R3+3R1




1 −3 1
0 5 −3
0 5 −3

������

2
5
5




∼ R3−→R3−R2−−−−−−−→




1 −3 1
0 5 −3
0 0 0

������

2
5
0




The given system reduced to

x−3y+ z = 2

5y−3z = 5, 0 = 0

The system has infinitely many solution.
Let z = t

=⇒ 5y = 5+3z =⇒ y = 1+
3
5

t and x = 2+3y− z = 2+3(1+
3
5

t)− t = 5+
9
5

t − t = 5+
4
5

t

where t is any real number. Hence,

x = 5+
4
5

t, y = 1+
3
5

t, and z = t ∀t ∈ R
For example, if t = 0 then x= 5, y= 1, z= 0, if t =−5 then x= 1, y=−2, z=−5

� Example 2.31 Solve the system of linear equation by using Gaussian elimination methods.

x−3y+ z = 2

2x− y− z = 5

−3x+14y−6z = 1

�
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Solution: The coefficient matrix is A =




1 −3 1
2 −1 −1
−3 14 −6


, X =




x
y
z


 and b =




2
5
1


 Write the

augmented matrix and apply row operations

A|b ∼




1 −3 1
2 −1 −1
−3 14 −6

������

2
5
1


∼ R2−→R2−2R1−−−−−−−−→

R3−→R3+3R1




1 −3 1
0 5 −3
0 5 −3

������

2
1
7




∼ R3−→R3−R2−−−−−−−→




1 −3 1
0 5 −3
0 0 0

������

2
5
6




The given system reduced to

x−3y+ z = 2

5y−3z = 5

0 = 6( impossible)

Therefore, the given system has no solutions.

Solving a System of linear Equations Using Inverse Method
Consider the system of linear equation

Ax = b (2.3)

where A is invertible square matrix. Multiply equation (2.3) by A−1 we get

x = A−1b

which is the unique solution of the given system.

� Example 2.32 Solve

2x+4y−2z = 6

−4x−6y+ z = 1

3x+5y− z =−1

�

Solution: The coefficient matrix is A =




2 4 −2
−4 −6 1
3 5 −1


.

From example (2.23) the inverse of A is

A−1 =




1
2

−3 −4

−1
2

2 3

−1 1 2




Using this result, we find that the solution of the given system is

X = A−1b =




1
2

−3 −4

−1
2

2 3

−1 1 2







6
1
−1


=




3−3+4
−3+2−3
−6+1−2


=




4
−4
−7




OR x = 4, y =−4, z =−7
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